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Although the growing inventory of cyclic peroxide 
natural products' has attracted increasing synthetic 
attention, the instability of the peroxide group has 
constrained most approaches to strategies accommodat- 
ing final-step introduction of one or both peroxide C-0 
bonds; typical examples include cyclization of unsatur- 
ated hydroperoxides and addition of lo2 to  diene^.^,^ Our 
laboratory has been investigating new methodology based 
upon carbon-carbon bond formation in the presence of 
the peroxide linkage, and we recently discovered a new 
approach to dialkyl peroxides based upon intermolecular 
displacement of monoperoxyketals by allyltrimethylsilane 
and other electron-rich alkenes in the presence of Lewis 
acids.4 We realized that the corresponding intramolecu- 
lar reaction would not only constitute a powerful new 
approach to the synthesis of cyclic peroxides but might, 
due to entropic advantages, be applicable to simple 
alkene nucleophiles. We now report a successful new 
approach to 1,2-dioxanes, l,Pdioxepanes, and 1,2-dioxo- 
canes based upon the cyclization of peroxycarbenium ions 
derived from unsaturated monoperoxyketals (Scheme 1). 

The substrates for cyclization studies are shown in 
Scheme 2. Monoperoxyketals la, 4ab, 5a, 6, and 7 were 
prepared through alkylation of 2-methoxyprop-2-yl hy- 
droperoxide with the appropriate alkyl bromide, iodide, 
or ~u l fona te .~ ,~  Monoperoxyacetals lb  and 2 were ob- 
tained through the analogous alkylation of l-methoxy- 
pent-1-yl hydroperoxide while IC was obtained upon 
acid-catalyzed addition of 4-methyl-3-pentenyl hydrop- 
eroxide to 2-methoxystyrene. Monoperoxyketal 3 was 
obtained from 6-hydroperoxy-6-(2-methoxyethoxy)-6- 
hexana17 through sequential alkylation and Wittig ole- 
fination.s Monoperoxyketal5b was obtained upon alky- 
lation of 1-(2-methoxyethoxy)-l-methylethyl hydroperoxide, 
available through ozonolysis of dimethylbutene in 2-meth- 
oxyethanol . 

Intramolecular attack of alkenes onto peroxycarbenium 
ions, much like reactions of corresponding oxycarbenium 
ions, can be classified by the ex0 or endo relationship o f  
both the electrophilic peroxycarbenium ion and the 
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l a  R1=Rz=CH3 2 3 4a X = CHPTMS 
l b  R 1 = H  Rz=nBu 4b X=OMe 
IC R1 =H Rp = CHpPh 

5a R = CH3 6 
5b R = CHzCHzOCH3 
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Scheme 3 
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9a: cis loa: cis 11 
lob: trans 9b: trans 8 

14 12: R = C(Me)=CH2 
13: R = CMe2CI 15 

nucleophilic alkene to the newly forming ring (Scheme 
1).lo Addition of either TiC14 or SnC14 to a chilled solution 
of perketal la  afforded 1,2-dioxane 8 in good yield 
through a 6-endolexo pathway" (Scheme 3 and Table 1). 
In pleasant contrast to the corresponding intermolecular 
reactions, cyclization was also successful for less stabi- 
lized peroxycarbenium ions; monoperoxyacetal l b  un- 
derwent cyclization to a 2.6: 1 cisltrans mixture of diox- 
anes 9a:9b while IC reacted to furnish a 6:l cisltrans 
mixture of dioxanes 10a:lOb in which the displaced 
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have been observed in cyclizations of acetal-derived 
oxycarbenium ions,14J8,20 all attempts to synthesize 1,2- 
dioxolanes through the corresponding 5exolendo cycliza- 
tions of Sa or 6b were also unsuccessful. 

Peroxycarbenium ion cyclizations do offer an entry to 
medium-ring peroxides. Reaction of monoperoxyacetal 
6 with TiC14 afforded the expected dioxepane 14 derived 
from 7-endolendo cyclization in 46% yield. However, 
monoperoxyacetal7 failed to undergo cyclization through 
the expected 7-exolendo mode; closure instead occurred 
in an 8-endolendo mode to furnish a 16% yield of 1,2- 
dioxocane 15 as a 2.4:l ratio of diastereomers. A similar 
outcome has been observed during corresponding cycliza- 
tions of unsaturated oxycarbenium ions.21,22 

In summary, we have demonstrated that the chemose- 
lective activation of monoperoxyacetals or -ketals with 
SnC14 or Tic14 produces an intermediate, presumably a 
peroxycarbenium ion, capable of undergoing intramo- 
lecular reaction with simple alkenes to furnish 1,2- 
dioxanes, 1,2-dioxepanes, and 1,2-dioxacanes. The suc- 
cess of cyclizations thorough 6-endolexo,6-exolexo, 7endol 
endo, or 8endolendo pathways, combined with the failure 
to observe products derived from 5-endolexo,6-endolendo, 
or 7-endolexo cyclizations, implies the possible existence 
of stereoelectronic constraints unique to peroxycarbenium 
ions. Further investigations into the scope and mecha- 
nism of this new reaction will be reported in due course. 
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Table 1 

conditions 
(all reactions at -78 "C) Droducts vield (%) entrv substrate 

1 
2 
3 
4 
5 
6 

7 
8 
9 

10  
11 
12 

la 
la 
lb 
I C  
2 
3 

4a 
4b 
5a 
5b 
6 
7 

Tic14 
SnCl4 
SnCl4 
Tic14 
SnC14 
Tic14 

Tic14 
Tic14 
Tic14 
Tic14 
Tic14 
Tic14 

30 min 
30 min 
4 h  
20 min 
2 h  
5 min 

2 h  
2 h  
l h  
10 min 
2 h  
8 min 

8 
8 
9ab 
lOab 
11 
12  
13 

1 4  
15 

64 
73 
68 (2.6:l) 
20 (5.7:l) 

18 (1.9:l) 
26 (7.2:l) 

46 
16 (2.4:l) 

methoxyl leaving group also acts as a cation trapping 
agent.12 However, even the intramolecular cyclizations 
remain ultimately limited by alkene nucleophilicity; 
disubstituted alkene 2 underwent acid-catalyzed dispro- 
portionation to diperoxyacetal 11 in lieu of cy~1ization.l~ 

The cyclizations of unsaturated monoperoxycarbenium 
ions appear to have stereoelectronic constraints not 
previously observed in related systems. Cyclization of 
monoperoxyketal 3 through a 6-exolexo mode was suc- 
cessful, affording dioxolanes 12 and 13, each as an cis1 
trans mixture. However, no dioxanes were isolated from 
attempted cyclization of 4a or 4b, even though 6endol 
endo cyclizations of oxycarbenium ions are well-pre- 
cedented.14-19 Similarly, although 5-endo-trig closures 
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