Communications

Peroxycarbenium-Mediated C-C Bond Formation: Synthesis of Cyclic Peroxides from Monoperoxyketals

Patrick H. Dussault,* Hyung-Jae Lee, and Q. Jason Niu

Department of Chemistry, Univerisity of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304

Received January 3, 1995

Although the growing inventory of cyclic peroxide natural products' has attracted increasing synthetic attention, the instability of the peroxide group has constrained most approaches to strategies accommodating final-step introduction of one **or** both peroxide C-0 bonds; typical examples include cyclization of unsaturated hydroperoxides and addition of ${}^{1}O_{2}$ to dienes.^{2,3} Our laboratory has been investigating new methodology based upon carbon-carbon bond formation in the presence of the peroxide linkage, and we recently discovered a new approach to dialkyl peroxides based upon intermolecular displacement of monoperoxyketals by allyltrimethylsilane and other electron-rich alkenes in the presence of Lewis acids.4 We realized that the corresponding *intramolecular* reaction would not only constitute a powerful new approach to the synthesis of cyclic peroxides but might, due to entropic advantages, be applicable to simple alkene nucleophiles. We now report a successful new approach to $1,2$ -dioxanes, $1,2$ -dioxepanes, and $1,2$ -dioxocanes based upon the cyclization of peroxycarbenium ions derived from unsaturated monoperoxyketals (Scheme 1).

The substrates for cyclization studies are shown in Scheme 2. Monoperoxyketals la, 4ab, 5a, **6,** and *7* were prepared through alkylation of 2-methoxyprop-2-yl hydroperoxide with the appropriate alkyl bromide, iodide, or sulfonate.^{5,6} Monoperoxyacetals 1b and 2 were obtained through the analogous alkylation of l-methoxypent-1-yl hydroperoxide while IC was obtained upon acid-catalyzed addition of 4-methyl-3-pentenyl hydroperoxide to 2-methoxystyrene. Monoperoxyketal **3** was obtained from **6-hydroperoxy-6-(2-methoxyethoxy)-6** hexana17 through sequential alkylation and Wittig olefination. δ Monoperoxyketal 5b was obtained upon alkylation of **1-(2-methoxyethoxy)-l-methylethyl** hydroperoxide, available through ozonolysis of dimethylbutene in 2-methoxyethanol.⁹
Intramolecular attack of alkenes onto peroxycarbenium

ions, much like reactions of corresponding oxycarbenium ions, can be classified by the *ex0* or *endo* relationship *of* both the electrophilic peroxycarbenium ion and the

(1) Casteel, D. **A.** *Nut. Prod. Rep.* **1992, 289-311.**

6459.
(5) Dussault, P.; Sahli, A. *J. Org. Chem.* **1992**, 57, 1009–1012.
(6) Yields for preparation of starting materials: **1a** (75%); **1b** (62%);
1c (45%); **2** (26%); **3** (3 steps, 5% overall); **4a** (13%); **4b** (7%); **5 5b (48%); 6 (39%); 7 (42%).**

(8) Dussault, **P.;** Sahli, **A.** *Tetrahedron Lett.* **1990,31, 5117-5120. (9)** Dussault, **P.** H.; Zope, U. R.; Westermeyer, T. **A.** *J. Org. Chem.,* in press.

nucleophilic alkene to the newly forming ring (Scheme 1).¹⁰ Addition of either TiCl₄ or SnCl₄ to a chilled solution of perketal la afforded 1,2-dioxane *8* in good yield through a 6-endo/exo pathway¹¹ (Scheme 3 and Table 1). In pleasant contrast to the corresponding intermolecular reactions, cyclization was also successful for less stabilized peroxycarbenium ions; monoperoxyacetal lb underwent cyclization to a *2.6:* **1** *cisltrans* mixture of diox-

anes 9a:9b while IC reacted to furnish a 6:l *cisltrans* mixture of dioxanes 10a:lOb in which the displaced

0 **1995** American Chemical Society

⁽²⁾ Clennan, E. **L.;** Foote, C. S. In *Organic Peroxides;* Ando, W., Ed.; John Wiley & Sons: Chichester, **1992;** pp **255-318. (3)** Matsugo, **S.;** Saito, I. In *Organic Peroxides;* Ando, W., Ed.; John

Wiley & Sons: Chichester, **1992;** pp **157-194. (4)** Dussault, **P.** H.; Lee, I. *Q. J. Am. Chem. SOC.* **1993,115, 6458-**

⁽¹⁰⁾ Cockerill, **G. S.;** Kocienski, P.; Treadgold, R. *J. Chem.* Soc., *Perkin Trans.* **1 1985, 2093-2100. (11)** Typical procedure: To a **-78** "C solution of monoperoxyacetal

⁽¹ mmol) in CHzClz **(3** mL) under an atmosphere of Nz was added **0.95** mL of a nominally **1.0** M solution of Tic14 in CHzC12. The resulting solution was stirred at -78 °C for 30 min and then quenched with water. The ether extract was dried over Na_2SO_4 and concentrated in vacuo. The crude product was directly subjected to flash chromatography on silica gel. All new compounds have been fully characterized by ¹H NMR, ¹³C NMR, IR, and satisfactory elemental analysis $(\pm 0.4\%)$.

Table 1					
entry	substrate	conditions (all reactions at -78 °C)		products	yield $(\%)$
1 2 3 $\frac{4}{5}$ 6	1a 1a 1 _b 1 _c 2 3	TiCl ₄ SnCl ₄ SnCl ₄ TiCl ₄ $\rm SnCl_4$ TiCl ₄	30 min 30 min 4 h 20 min 2 h 5 min	8 8 9ab 10ab 11 12	64 73 68(2.6:1) 20(5.7:1) 18(1.9:1)
7 8 9 10 11 12	4a 4b 5а 5b 6 7	TiCl ₄ TiCl ₄ TiCl ₄ TiCl ₄ TiCl ₄ TiCl ₄	2 h 2 _h 1 _h 10 min 2 h 8 min	13 14 15	26(7.2:1) 46 16(2.4:1)

 \overline{a} 1.1

methoxyl leaving group also acts as a cation trapping agent.¹² However, even the intramolecular cyclizations remain ultimately limited by alkene nucleophilicity; disubstituted alkene **2** underwent acid-catalyzed disproportionation to diperoxyacetal 11 in lieu of cyclization.¹³

The cyclizations of unsaturated monoperoxycarbenium ions appear to have stereoelectronic constraints not previously observed in related systems. Cyclization of monoperoxyketal **3** through a 6-exolexo mode was successful, affording dioxolanes **12** and **13,** each as an *cis1* trans mixture. However, no dioxanes were isolated from attempted cyclization of 4a or 4b, even though 6-endo/ endo cyclizations of oxycarbenium ions are well-precedented.14-19 Similarly, although 5-endo-trig closures

(13) Rieche, A.; Bischoff, C.; Dietrich, P. *Chm. Ber.* 1961,94,2932- 2936.

(14) Nishiyama, H.; Itoh, K. *J.* Org. *Chem.* 1982, 47, 2496-2498. (15) Cockerill, G. S.; Kocienski, P. *J. Chem. SOC., Chem. Commun.* 1983, 705-706.

(16) Overman, L. E. **Acc.** *Chem.* Res. 1992,25, 352-359.

(16) Overman, L. E. *Acc. Chem. Res. 1992, 20, 352*–359.

(17) Coppi, L.; Ricci, A.; Taddei, M. J. *Org. Chem.* **1988**, 53, 911–
 913.

(18) Lolkema, L. D. M.; Hiemstra, H.; Semeyn, C.; Speckamp, W. N. *Tetrahedron* 1994,50, 7115-7128.

(19) Melany, M. L.; Lock, G. L.; Thompson, D. W. *J. Org. Chem.*
1985, 50, 3925-3927.

have been observed in cyclizations of acetal-derived oxycarbenium ions, $14,18,20$ all attempts to synthesize 1,2dioxolanes through the corresponding 5-exo/endo cyclizations of **Sa** or **6b** were also unsuccessful.

Peroxycarbenium ion cyclizations do offer an entry to medium-ring peroxides. Reaction of monoperoxyacetal **6** with TiC14 afforded the expected dioxepane **14** derived from 7-endolendo cyclization in 46% yield. However, monoperoxyacetal 7 failed to undergo cyclization through the expected 7-exo/endo mode; closure instead occurred in an 8 -endo/endo mode to furnish a 16% yield of 1,2dioxocane **15** as a 2.4:l ratio of diastereomers. **A** similar outcome has been observed during corresponding cyclizations of unsaturated oxycarbenium ions.^{21,22}

In summary, we have demonstrated that the chemoselective activation of monoperoxyacetals or -ketals with SnC₁₄ or TiC₁₄ produces an intermediate, presumably a peroxycarbenium ion, capable of undergoing intramolecular reaction with simple alkenes to furnish 1,2 dioxanes, 1,2-dioxepanes, and 1,2-dioxacanes. The success of cyclizations thorough 6-endolexo, 6-exolexo, 7-endol endo, or 8-endo/endo pathways, combined with the failure to observe products derived from 5-endo/exo, 6-endo/endo, or 7-endolexo cyclizations, implies the possible existence of stereoelectronic constraints unique to peroxycarbenium ions. Further investigations into the scope and mechanism of this new reaction will be reported in due course.

Acknowledgment. This work was supported by the National Institutes of Health (GM45571). NMR instrumentation was funded, in part, by NIH (SIG-1-Sl0- RR06301). Technical assistance by Dr. Umesh Zope was greatly appreciated.

1-15 and unnumbered synthetic precursors **(29** pages). Supplementary Material Available: ¹H NMR spectra of

J0950001N

(21) Overman, L. E.; Blumenkopf, T. A.; Castafiada, **A,;** Thompson, A. S. J. *Am. Chem. SOC.* 1986,108,3516-3517. (22)Blumenkopf, T. A.; Bratz, M.; Castafiada, A.; Look, G. C.;

⁽¹²⁾ Due to overlapping signals in the NMR spectrum the cis and trans isomers of **9** were assigned by analogy to **10ab**, whose 3J_H across the newly formed bond were as follows: **10a** (cis) = 3.3 Hz; **10b** (trans) = 9.7 Hz. In addition, **10a** displayed $2-4\%$ NOE enhancements between **H5** (axial) and the benzylic hydrogens.

⁽²⁰⁾ Overman, L. E.; Castafiada, **A,;** Blumenkopf, T. A. *J. Am. Chem.* Soc. 1986, 108, 1303-1304.

Overman, L. E.; Rodriguez, D.; Thompson, A. S. J. Am. Chem. Soc. 1990,112,4386-4399.